PHYSICAL REVIEW E 71, 036703(2005

Fractal structure of spin clusters and domain walls in the two-dimensional Ising model
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The fractal structure of spin clusters and their boundaries in the critical two-dimensional Ising model is
investigated numerically. The fractal dimensions of these geometrical objects are estimated by means of Monte
Carlo simulations on relatively small lattices through standard finite-size scaling. The obtained results are in
excellent agreement with theoretical predictions and partly provide significant improvements in precision over
existing numerical estimates.
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I. INTRODUCTION conjectured on the basis of the Coulomb-gas mtp-13

The past few years have witnessed a surge in the gedd conformal invarianc¢l4] could rigorously be estab-
metrical approach to phase transitions. The prototype of suckshed by this methodfor an overview see Ref15)).
an approach is percolation thedy, which focuses on clus- In this paper, we numerically investigate the fractal struc-
ters of (randomly occupied sites or bonds on a lattice. The ture of clusters in the 2D Ising model, corresponding to set-
fractal structure of these geometrical objects and whether ding q=2. We simulate the model on relatively small lattices
not a cluster percolates the lattice are central topics adl=8-512 with periodic boundary conditions, and apply
dressed by the theory. Spin models such asgtseate Potts standard finite-size scaling to determine the various fractal
models can easily be mapped onto percolation theory, witldimensions. In addition to studying the size or “mass” of FK
neighboring spins in the same spin state lumped together in@and geometrical clusters, we also examine their boundaries.
cluster. Generally, the geometrical spin clusters thus contThose of geometrical clusters form the famous Peierls do-
structed do not percolate at the critical temperafiyevhere  main walls[16], separating spin clusters of opposite orienta-
the thermal phase transition takes place. But by erasing witkion. In a previous papef9], we simulated these domain
a certain temperature-dependent probability bonds betweemalls directly by considering the high-temperature represen-
like spins, Fortuin and KasteleyifK) [2] showed that spin tation of the model. By duality, the high-temperature graphs,
clusters can be constructed for the Potts models that do pewhich are closed, are domain walls on the dual lattice. The
colate atT, and encode the thermal critical behavior. Theyclosed graph configurations were generated by means of a
thus achieved a geometrical description of the thermal phadéetropolis update algorithm, involving single plaquettes.
transition in these models. The cluster approach has been Other recent numerical studies of the geometrical struc-
turned into an efficient Monte Carlo algorithm by Swendsenture of 2D Potts models were reported in R¢fis?,18. Our
and Wang3], and by Wolff[4], where not individual spins results for the fractal dimensions are in excellent agreement
are updated, as in local spin updates with, e.g., the Metropawith theoretical predictiong7,13,19—-21, and provide in par-
lis algorithm, but entire FK clusters. ticular for the FK and geometrical clusters a considerable
An exception to the rule that geometrical clusters do noimprovement in precision over the estimates obtained in
percolate atT, is the two-dimensional2D) g-state Potts Refs.[17,18§].
model. The origin of this effect can be understood by extend- The rest of the paper is structured as follows. The next
ing the pure lattice model to include vacant sites. In asection summarizes the necessary theoretical background.
Kadanoff block-spin approach, such an extension is naturdlumerical results are presented in Sec. lll, followed by con-
as the vacant sites represent disordered blocks without a makuding remarks in Sec. IV.
jority in any of the spin states, and is essential for establish-
ing that the phase transition of the pure models changes from Il. FRACTAL STRUCTURES
being continuous to first order at=4 [5,6]. In addition to
the pure Potts critical behavior, the site diluted model also The fractal properties of spin clusters and boundaries,
displays tricritical behavior at the same critical temperaturévhich are clusters themselves, are described by a straightfor-
T.. While the critical behavior of the pure model is encodedward extension of ordinary percolation thedi]. Asymp-
in the FK clusters, the tricritical behavior is encoded in thetotically, cluster distributiong’, take a general form
geometrical clusterfs7—9]. Both cluster types percolate &t €, ~ N exp- 6n) (1)
With increasingq, the critical and tricritical fixed points, n ’
which are characterized by the same central chaygeove  consisting of two factors(i) an entropy factor, which mea-
together until merging aq=4. sures the number of ways a cluster of sizean be embed-
Very recently, cluster boundaries of critical 2D systemsded in the lattice, andii) a Boltzmann weight, which sup-
have been studied analytically by means of the so-called stgresses large clusters whehis finite. Clusters proliferate
chastic Loewner evolution, introduced by Schranph®].  and percolate the lattice whehtends to zero. The vanishing
Various exact predictions for critical exponents previouslyis characterized by an exponantas 0<><|T—Tp|1"7, whereT,
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denotes the percolation temperature. As explained in the In- K K K 1
troduction, the percolation thresholds of both FK and geo- Dy =1 *o Dep=1 * oo 9
metrical clusters coincide with the thermal critical tempera- K
ture of the 2D Ising model. The entropy exponent while the central charge conserving map corresponds to let-
determines the fractal structure of the geometrical objectsing k— 1/k. These explicit forms are seen to satisfy the
Rather than extracting this exponent directly from theduality relation(6). With the scaling relationéb), the critical
asymptotic behavior of a distribution at the percolationexponent ratios characterizing the FK boundaries become
threshold, where the distribution becomes algebraic, it is ex- K, — K _
pedient to extract it from derived quantities such as the per- Wlv=" veplv=1k, (10
colation strengtiP.., giving the fraction of sites in the largest \yhere a single correlation length with exponentis as-
cluster, and the average cluster siz¢ sumed. It thus follows that the two FK boundary sizes scale
) with inverse exponents:
>,y

X=— ) X~ LS, xER~ LYk, (11

2, N, .
n In contrast to FK clusters, geometrical clusters are char-

Since every site belongs to some geometrical and some FRCterized by é)nly one boundary dimension, i.e., the fractal
cluster, the denominator in E(R) adds up to the total num- dimensionsDy; and D¢, of the hull and external perimeter

H G_nG . .
ber of sites for these clusters. Close to the percolation thresfgPincide, Dg=Dgp. Such cases are signaled by a negative

old, the observables obey the finite-size scaling 1522 fractal dimension of t_hg red sitg¢49], sites_ that, .When re-
moved, lead to a splitting of the cluster into disconnected
P.=LA"P(LI9, x=L"X(LI9), (3  parts.

The central charge conserving map- 1/« transforming
wherelL is the lattice size and the correlation length whose the hull dimensiorDEK of FK clusters into that of their ex-
divergence at criticality is governed by the exponenThe  ternal perimetersDgk, also maps it onto the hull dimension

ratios B8/ v and y/ v are given in terms of as[1] of geometrical clusters, implying21]
B =d7—2’ Z:dB_T, @ DEK=DE. (12
v =1 v -1 This relation is remarkable as it involves the two different

boundary types. In the context of uncorrelated percolation
[23], the hull of a cluster in 2D is traced out by a directed
random walker constrained to move on the cluster only,
whereas the external perimeter is traced out by a walker con-
d g 1 v strained to move around the hull on sites neighboring, but
D= i d- e §<d + —>- (5  not belonging to, that cluster.
To numerically verify relation(12), we wish to treat ex-

Generically, two(and only two different cluster bound- ternal perimeters of FK clusters and hulls of geometrical
aries can be identified23]: the hull (H) and the external clusters in the same manner. To this end we apply the same
perimeter(EP), where the second can be understood as algorithm used to trace out geometrical hulls to find the FK
smoother version of the first. For 2D FK clusters, the twoexternal perimeters, where it is recalled that FK clusters dif-
boundaries are in one-to-one correspondence, with their frader from geometrical clusters in that with a prescribed
tal dimensions satisfying the relati¢@1] temperature-dependent probability bonds are erased. The dif-
ference between tracing out FK hulls and external perimeters
then reduces tdsee Fig. 1 allowing the random walker to
move to a nearest neighbor site on the FK boundary only
provided the connecting bond is sktll) or always(external
The map transforming one FK boundary dimension into theperimetey.

with d the dimensionality of the lattice. The fractal dimen-
sion D, which is also determined solely by the entropy ex-
ponentr, is related to these exponents yig

14

1
(D - D(Dgs-1)= 7. (6)

other conserves the central chagevhich may be param-  To conclude this section we list in Table | the predicted
etrized aq 12,14 exact value$7,13,19-2] for the various fractal dimensions
) and corresponding critical exponents we wish to determine
coq- 6(125 —13- 6<7+ é) ' (7)  humerically.
K K
where 2=«x=1 parametrizes the two-dimensionaistate Ill. MONTE CARLO SIMULATIONS

Potts models . . .
The simulation data was collected on square lattices of

\e"a:—Z cosmlx), (8) linear sizeL=8, 10, 12, 14, 16, 20, 24, 32, 40, 48, 64, 90,

128, 180, 256, 360, and 512 with periodic boundary condi-
with 0=qg=4. In terms ofk, the fractal dimensions of the tions, using the Swendsen-Wang cluster algoritfBh in
FK boundarie§13,21] can be expressed as about 5< 10* measurements at the critical temperatiige
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TABLE Il. FK clusters.

Fitinterval ~ yE/» x?per DOF  BE¢/v  x? per DOF

8-256  1.751(b) 0.89 0.12444) 0.74

16-256 1.750[8) 1.02 0.12460) 0.95

32-256 1.7500.2) 1.39 0.12488) 1.31

40-256 1.7503) 1.43 0.124) 1.43

64-256 1.749@1) 0.52 0.125414) 0.33

(@) (b) 8-512  1.751) 0.86 0.12443) 0.71

16-512  1.750{®) 0.95 0.124¢4) 0.88

FIG. 1. (Color onling Part of a single FK cluster of nearest 32-512 1.75088) 1.23 0.1247) 1.14

neighbor sitegfilled circles connected by bond&lack links. (a) 40-512 1.7500) 1.20 0.124%6) 117
Sites belonging to the hulbark filled circles are found by allow-

64-512 1.7508.2) 0.61 0.1248) 0.47

ing the random walker tracing out the boundary to move only over
set bonds(b) Sites belonging to the external perimetdark filled Exact 1.75087/4 0.1250=1/8
circles are found by allowing the random walker to move to a
nearest neighbor on the cluster irrespective of whether the connect-

ing bond is set or not. The external perimeter, which contains tWjistripution. Moreover, the Grossman-Aharony algorithm

sites less thaq the hull for this boundary segment, is therefore E’23] we use to trace out the cluster boundaries generally fails

smoother version of the hull. on a percolating cluster as its boundary does not necessarily
_ form a single closed loop any longer. With the percolating

=2/In(1+y2), every 7th sweep of the lattice, where de-  clusters ignored, the boundary exponefiscs/ » cannot be

notes the autocorrelation tinfeounded off to the next largest determined, while the summation in the expressi@nfor

intege). The value ofr for the various lattice sizek was  the average cluster boundary size is restricted to nonperco-

estimated from the energy time series to vary from4 for  Ilating clusters.

L=8 to 7=9 for L=512. We have chosen the energy time

series here as it generally leads to a conservative estimate of 1. FK clusters

the autocorrelation time for cluster algorithms. A total of 5 FK—

X 10° lattice sweeps were used for eguilibration. Statistical n Relf ' %S]DtFQe_ \1/2|/U86_Df 8_715'87(1) compa;efd tohth? ex |

errors were estimated by means of jackknife binriadg. act resu (19 D¢ = o was reported for the fracta

dimension of FK clusters. It was obtained on a single, but

very large latticeL =22=4096 with both open and periodic
A. Fractal dimensions boundary conditions by considering the number of bond

Tables Il-V summarize the values obtained for the criticalCluSters as a function of the radius of gyration. The authors
exponents of the FK and geometrical clusters, as well as dfPserved a slow and complex approach to the asymptotic
the FK hulls and external perimeters. Wheter andg/vare  ehavior and therefore included corrections to scaling to ar-
listed, both are measured independently by considering théve at their numerical estimates. To limit the number of fit
average cluster sizg, which givesy/ v according to Eq(3)  Parameters, they scanned the fractal dimensions in the neigh-
with X(0)=const, and the percolation strengkh, which ~ borhood of the predicted values, and completely fixed the
gives B/v according to Eq(3) with P(0)=const. The data
were fitted using the least-squares Marquardt-Levenberg al- TABLE Ill. Geometrical clusters.
gorithm. —

While including the percolating clusters when consideringFit interval /v x?per DOF  g2/v  x? per DOF
the mass of the cluster, we ignore them in tracing out cluster
boundaries Because of the finite lattice size, large percolat- 8-256 1.8948) 1.16 0.053%2) 0.83
ing clusters have abnormal sma#ixterna] boundaries, so 16-256 1.8944) 1.39 0.0533) 0.94

that including them would lead to a distortion of the hull 32-256  1.8946) 1.90 0.05284) 1.24
40-256 1.895(®) 1.78 0.052¢4) 1.09
TABLE |. Predicted values for the fractal dimensions with the 64-256  1.894®) 0.47 0.05277) 0.18

corresponding critical exponents characterizing Fortuin-Kasteleyn

(FK) and geometricalG) clusters(C), their hulls(H), and external 8-512 1.894@) 1.29 0.0530) 0.89

perimeterEP). 16-512 1.894@) 1.34 0.052¢) 0.88
32-512 1.894@1) 1.60 0.05283) 1.02

D¢ velv Bclv Dy yulv Dep yeplv 40-512 1.895M) 1.39 0.05263) 0.86

64-512 1.895() 0.44 0.05274) 0.23

FK  15/8 714 1/8 5/3 4/3 11/8 3/4
G 187/96 91/48 5/96 11/8 3/4 Exact 1.8958=91/48 0.0525/96
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TABLE V. Hulls of FK clusters. 108 T — T
B Percolating clusters: included — +
L. K s L excluded X .y
Fit interval Y v ¥ per DOF 10° | P
8-512 1.300) 471 100 [ e A
16-512 1.29) 3.65 [ et e ]
o0 103 e _X-T -
32-512 1.286) 1.57 = 10°F +/+,.x+ X ;
40-512 1.2880) 1.36 102 B +‘77+,,+'+'"' " ><X h
64-512 1.28(5) 0.62 o y X5 ]
w0 o xS .
8-256 1.3112) 2.88 - ]
8—128 1.31&) 1.50 100 [ 1ol 1 1 1 T |
8-90 1.323) 1.29 10! 107
8-64 1.3284) 1.10 L
8-48 1.32%5) 0.79 FIG. 2. (Color onling Log-log plot of the average sizng of

critical geometrical clusters as a function of the lattice $iz&ta-
tistical error bars are smaller than the symbol size in the figure. The
straight lines proportional th®/#8are put through the data points at
values of the correction exponents to the theoretically prel=512 by hand to demonstrate the corrections to scaling for smaller
dicted ones. This left them with still four parameters to fit. lattice sizes when percolating clusters are excluded, and the absence
Error bars on the values of the fractal dimensions were dethereof when they are included in the measurements.
termined as the range wherg® per degree of freedom
(DOR) <2. A possible explanation for the improved accuracy we
In this Study, where we use different lattice sizes and CONzchieved over Ref[lg], a|th0ugh Working on smaller lat-
sider not the bonds but the sites in a cluster, we find a simplgces, may be that in that study clusters touching the bound-
approach to the asymptotic behavior with very small correcyy were ‘ignored in the measurements. This set includes all
tions to scaling in the observables required to deterBige e percolating clusters. As will be illustrated in the next

all the way down to the smallest lattice considefed8).  sypsection, omitting percolating clusters can lead to strong
We can therefore apply finite-size scaling without correctioncorrections to scaling.

terms. Since the fits involve only two parameters, no expo-
nents need to be fixed beforehand. To minimize the effect of 2. Geometrical clusters

unavoidable(smal) corrections to scaling, we pick the fit In Ref. [17], the valuesy3/»=1.90111) and S/v

over the largest lattice sizes given in Table Il, i.e., over the_ .
range 64-512, leading to =0.0522) were reported for geometrical clusters. These re-

sults were obtained on lattices ranging in size flos600 to

D¢ =1.87536) (13) 2000, i.e., again much larger than the ones considered by us.

size data{[nStead of using periodic boundary conditions, as we did,
ree boundary conditions were adopted. Another difference

Exact 1.3334/3

with x* per DOF=0.61 from the average cluster-

and from our approach is that percolating clusters were excluded
DFX=1.87528) (14)  in Ref.[17].
, . Our estimates, obtained from the largest lattice sizes listed
2 — - L)
with ) per DOF=0.47 fro_m_the percolation stre_ng_th data'in Table Ill, i.e., from the interval 64-512, are
Both estimates are well within one standard deviation from
the exact predictiofi19] DE=15/8=1.875. DS =1.94763) (15)
TABLE V. External perimeters of FK clusters. with x? per DOF=0.44 from the average cluster-size data
and
Fit interval YESI v X2 per DOF
DS =1.94734) (16)
24-256 0.76®) 4.32 _ .
32_256 0.75@) 3.10 with x? per DOF=0.23 from the percolation-strength data.

Both are in excellent agreement with the exact predidtidn
40-256 07564 3.24 DZ=187/96=1.9479....

64-256 0.748) 4.13 In Fig. 2 we show our data for the average cluster size
24-512 0.75) 7.97 obtained by including all clusters and compare them with the
data obtained with percolating clusters excluded from the

32-512 0.74 5.73 - .
@) measurements, similarly to what was done in Réf7].
40-512 0.74) 5.29 S . . .
While virtually absent in the former, corrections to scaling
64-512 0.736% 4.37

are present in the latter case. This may explain why, although
Exact 0.7563/4 working on smaller lattices, we obtained much better esti-
mates than in Ref17]. We found similar corrections to scal-
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FIG. 3. (Color onling Log-log plot of the average hull siz;g{jK FIG. 4. (Color onling Log-log plot of the average hull siz,g(j
of critical FK clusters as a function of the lattice sizeStatistical  of critical geometrical clusters as a function of the lattice dize
error bars are smaller than the symbol size in the figure. The straigt8tatistical error bars are smaller than the symbol size in the figure.
line 0.310.1329s obtained through a two-parameter fit in the inter- The straight line proportional tb®# is put through the data point at
val 8-48. L=512 by hand to demonstrate the strong corrections to scaling for
smaller lattice sizes. A three-parameter fit in the interval 6-512

ing when instead of percolating clusters, the largest cluster i§iVes the valuev=0.543) for the effective correction-to-scaling
each measurement was excluded, as is common in randoffPonent.

percolation[22].
normalized to the volumé&?. The bump at the tail of the

cluster distribution is due to the finite size of the lattice, with
percolating clusters gulping up smaller ones reached by
Surprisingly, the results for the hulls of FK clusters given crossing lattice boundaries. The subsequent sharp drop-off
in Table IV show a clear tendency to the predicted valLgg arises because of the limited number of lattice sites available.
Yi¢1v=413, corresponding toD{“=5/3=1.6666..., when Initially, as Fig. 5 clearly shows, the hull distribution fol-
restricting the fitting window to increasinglymallerlattice  lows more or less the cluster distribution. This is a common
sizes. For example, for the interval 8—48 we find feature of all boundary distributions considered. The rela-
DFK = 1.6653) (17 tive]y early d(op-off of the hull distri_bution is because we
H — omit percolating clusters when tracing out cluster bound-
with x2 per DOF=0.79, indicating a good fit. This estimate, aries. As a result, the average hull size is underestimated and

which should be compared with the estimate 116§iven in

3. FK hulls

Ref. [18], is within one standard deviation from the exact 107 o e ot
prediction. From Fig. 3 we see that the average FK hull size 102 , "L_32 .«
measured on larger lattices falls below the expected value ,sf  *, bulls, =512 =
extrapolated from smaller lattices. We have not been able tc F " i
determine the cause of this behavior. In fact, when fitting not ~ '*" [ E
at the low end but at the high end of the lattice sizes consid-3 10°° 3
ered, we obtain fits of comparable quality, but the estimate< 106 | -
for the exponent converges to a value significantly below the ;7 [ 2
predicted ondsee top part of Table I\ 108 L p
) 10 | -
4. Geometrical hulls r ]

1010 L ral 1 PR | 1 ral
As for the clusters’ mass when disregarding percolating 10° 10! 10? 10° 10*

clusters, we observe strong corrections to scaling for the n
hulls of geometrical clustersee Fig. 4. This is different
from what we found using the plaquette update to directly, .

simulate the hulls of the spins on the dual lattiéé where ., qidered =512 and on a relatively small lattic =32). The
these corrections were virtually absésee Fig. 11 of that mper of measurements taken on the largest lattice was about 5
papey, allowing us to obtain precise estimates for the criticalx 1o a5 in most part of this paper. Statistical error bars are omitted
exponents on relatively small lattices. In that study, the largfrom the data points for clarity. On the smaller lattice, about 5
est hull was omitted in each measurement. % 10° measurements, which is an order of magnitude more than

To understand the strong corrections to scaling found hergsed in the rest of the paper, were taken to achieve good statistics.
for the geometrical hulls, we depict in Fig. 5 the geometricalHere, the statistical error bars are smaller than the symbol size in
cluster and the corresponding hull distributions for32  the figure.

FIG. 5. (Color onling Log-log plot of the (normalized geo-
trical cluster and hull distributions dt on the largest lattice
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10* gy ————r — 10° T —— —— —T— —r
C E F-
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107 4t [
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wa, L o 3 i
E - o+ - -
= _ 4
L ,/F’+ 4 L
10! | e F T - R
E 1 E i
F + 1 i
100 Las . el . L 10_16' ) L Lo L o
1ot 10° 100 10 102 102 104
L (@) n
0
FIG. 6. (Color onling Log-log plot of the average external pe- 10 ) L T T L T
i i ( FK 8 Log-lag p ; g : -p [ Geometical clusters: oc n=379/187 ----- .
rimeter sizeygp Of FK clusters afl; as a function of the lattice size 102 F-- I 7t R

L. Statistical error bars are smaller than the symbol size in the
figure. The straight line 1.3887%¢ is obtained through a two-

parameter fit in the interval 64-512. Note the corrections to scaling  10-¢
for smaller lattice sizes.

]

the data points in Fig. 4 are below the expected line extrapo- 1p-10
lated from larger lattice sizes. With increasing lattice size,
the effect becomes small&ee Fig. 5, where also the distri-

—12

£,/L?
= =
[=1 [=1 O‘
oo
L L L D D L L

butions for L=512 are includedand the data points ap- 10714 vy

proach the expected asymptotic scaling, corresponding tc 10-16 . ol Lol Ll T

[20] y5/v=3/4, andDS=11/8. Figure 5 shows in addition o 10' 102 103 10t
n

that the asymptotic behavior of the hull distribution sets in
for relatively large hull sizesn=100. On smaller lattices,

the asymptotic behavior can therefore simply not be probedstuclieol forL=16 (short curves and 512(long curves. (a) The

explalnlng_the strong corrections in F'Q- 4. ) (normalized distributions of FK clusters and of their hulls and ex-
. To Se? 'f our data are at least cons_lstent with the theo_rerl'ernal perimeters. For clarity, the latter two are shifted downward by
ical prediction, we account for corrections to scaling by fit-y,4 decades eactb) The (normalized distributions of geometrical
ting the average hull-size data to the form clusters and of their hulls. The latter is shifted downward by four
G_ Gy, - decades. Statistical error bars are also for clarity omitted from the
X =al7i(1 -bL™), (18) data points. The straight lines are obtained through one-parameter
with an effective correction-to-scaling exponemt We fix fits with the slopes fixed to the predicted values. To achieve good

YS/ v=3/4 to thepredicted value, leaving us with three pa- statistics for theL=16 lattice, about % 10° measurements were
taken—an order of magnitude more than used folLth&12 lattice.

FIG. 8. (Color onling Log-log plot of the critical distributions

10° T T T T T T L
Geometrical hulls . '
0t . come nbg?{ hulls = 7] rametersw and the two amplitudea andb) to fit. For the

10 s FK external perimeters  « interval 6-512 we obtain

102 -
101 -
<& 100
10—1 -
10—2 -
10—3 -

10—4 -
10-5 . M N M Lal
10° 10t 10? 108 10*

n

w=0.543) (19

with x? per DOF=1.60, indicating a reasonable(fiee Fig.
4) ang therefore consistency with the theoretical prediction
for Dy

5. FK external perimeters

The corrections to scaling are less pronounced for the
external perimeters of FK clusters as they are generally

FIG. 7. (Color onling Log-log plot of the distributions of the ~SmMaller than geometrical clusters and thus less likely to per-
three different boundaries @ for L=512. Statistical error bars are Colate(see Fig. 6. Also the asymptotic behavior is reached
omitted from the data points for clarity. The FK external perimeteréarlier than for geometrical hulls. The smallness of the cor-
distribution initially follows the FK hull distribution before at rections allows us to obtain reasonable fits for the average
aroundn=100 it crosses over to its asymptotic behavior which it external perimeter size. Our result obtained from the fitting
shares with the geometrical hulls. interval 64-512 in Table V yields the fractal dimension
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DE*;: 1.3682) (20) were studied numerically. The Monte Carlo simulations were
L ) . ] ) ) carried out on comparatively small lattices. Standard finite-
with x* per DOF=4.37. This estimate is compatible with thesjze scaling was applied to obtain very precise estimates for
exact predF||(<:t|0r’{21] Dep=11/8=1.375, and improves the the cluster dimensions, significantly improving existing ones.
estimateDgp=1.362) reported in Ref[18] by about one  The results confirm the exact theoretical predictions to a high
order of magnitude. degree of precision.
For the boundary dimensions, although improving exist-
ing estimates, we obtained less accurate results because of
In Fig. 7, the distributions of the three different bound- corrections to scaling. We observed the strongest corrections
aries studied are plotted for=512 to show the crossover of for the geometrical hulls, whose distribution approaches its
the eXternal perimeters Of FK Clusters. Starting Similarly thsymptotiC form Very S|ow|y_ In a previous numerical inves-
the FK hull distribution, the FK external perimeter distribu- tigation [9]’ where we simulated the hulls of the Spins on the
tion asymptotically approaches that of the geometrical hullsgua| Iattice directly, corrections to scaling were virtually ab-
in accordance with relatiofl2). In other words, the FK ex- gent, allowing us to establish the geometrical hull dimension
ternal perimeter distribution interpolates between that of theg fairly high precision.
FK (for small n) and geometrical hullsasymptotically for To our surprise, we found the fractal dimension of the FK
large n). hulls to converge to the predicted value only when restricting
Figure 8 summarizes all the cluster and boundary distrithe fitting window to increasingly smaller lattice sizes. In
butions studied fok.=16 and 512. The distributions are nor- generaL one expects of course such a convergence when in-
malized to the volumé? Upon increasing the lattice size, creasing the lattice size, rather than decreasing it, so as to
the normalized distributions tend to a universal curve. Th%|n|m|ze corrections to Sca"ng_ The measured average FK
slow approach to the asymptotic form of the geometrical hullyy|| size on larger lattices falls below the line extrapolated
distribution (and to a lesser extent that of the FK externalfrom smaller lattices. The cause for this behavior eludes us.
perimeter distributiop with the associated strong corrections 1o verify relation(12), involving the two different bound-
to scaling we observed for these objects, stands out clearlé(ry types that can be defined for a cluster, viz. hulls and
from the other distributions. external perimeters, we treated the two boundary types in a
It is tempting to directly analyze the distributioig and  sjmilar manner. Usually, hulls are traced out by a directed
to extract the exponentfrom the asymptotic behavior @,  random walker on the cluster whereas external perimeters are
which is algebraic at Crltlcallty However, this method giveStraced out by a directed random walker probing the cluster
far less accurate results than applying finite-size scaling tfom the outside. We, on the other hand, applied the hull
observables involving the suli, over the cluster sizeB.  a|gorithm also to the external perimeters of FK clusters, with
The main drawback of the method is the great sensitivity tghe proviso that the random walker can move to a nearest
the location of the flttlng WindOW, i.e., the interval of The neighbor site on the FK boundary even when the Connecting

fitting range cannot be started at too small cluster sizesyond is not setfor the hull, the bond must be 3et
where the distribution has not taken on its asymptotic form

yet, while too large cluster sizes, which are generated only a
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